
Distributed Real-Time Stream
Processing: Why and How

Petr Zapletal
@petr_zapletal

NE Scala 2016

Agenda

● Motivation

● Stream Processing

● Available Frameworks

● Systems Comparison

● Recommendations

● 8 Zettabytes (1 ZB = 1021 B = 1 billion TB) created in 2015
● Every minute we create

○ 200 million emails

○ 48 hours of YouTube video

○ 2 million google queries

○ 200 000 tweets

○ ...

● How can we make sense of all data
○ Most data is not interesting

○ New data supersedes old data

○ Challenge is not only storage but processing

The Data Deluge

New Sources And New Use Cases

● Many new sources of data become
available

○ Sensors

○ Mobile devices

○ Web feeds

○ Social networking

○ Cameras

○ Databases

○ ...

● Even more use cases become viable
○ Web/Social feed mining

○ Real-time data analysis

○ Fraud detection

○ Smart order routing

○ Intelligence and surveillance

○ Pricing and analytics

○ Trends detection

○ Log processing

○ Real-time data aggregation

○ …

Stream Processing to the Rescue

● Process data streams on-the-fly without permanent storage

● Stream data rates can be high

○ High resource requirements for processing (clusters, data centres)

● Processing stream data has real-time aspect

○ Latency of data processing matters

○ Must be able to react to events as they occur

Streaming Applications

ETL Operations

● Transformations, joining or filtering of incoming data

Windowing

● Trends in bounded interval, like tweets or sales

Streaming Applications

Machine Learning

● Clustering, Trend fitting, Classification

Pattern Recognition

● Fraud detection, Signal triggering,
Anomaly detection

Processing Architecture Evolution

 Batch Pipeline

Kappa ArchitectureLambda Architecture

Standalone Stream Processing

Stream
Processing

Batch Layer Serving
Layer

Stream layer

Query

Query

A
ll

yo
u

r
d

at
a

Oozie

Stream
Processing

Query

Serving DBHDFS

Query

Distributed Stream Processing

● Continuous processing, aggregation and analysis of unbounded data
● General computational model as MapReduce
● Expected latency in milliseconds or seconds
● Systems often modelled as Directed Acyclic Graph (DAG)

● Describes topology of streaming job
● Data flows through chain of processors

from sources to sinks

Points of Interest

● Runtime and programming model

● Primitives

● State management

● Message delivery guarantees

● Fault tolerance & Low overhead recovery

● Latency, Throughput & Scalability

● Maturity and Adoption Level

● Ease of development and operability

Runtime and Programming Model

● Most important trait of stream processing system

● Defines expressiveness, possible operations and its limitations

● Therefore defines systems capabilities and its use cases

Native Streaming

Native stream processing systems
continuous operator model

record

Source Operator

Processing Operator

Processing Operator

Sink Operator

records processed one at a time

Micro-batching

Receiver

records

Processing Operator

Micro-batches

Records processed in short batches

Sink
Operator

Processing Operator

Native Streaming

● Records are processed as they arrive
● Native model with general processing ability

Pros

➔ Expressiveness
➔ Low-latency
➔ Stateful operations

Cons

➔ Throughput
➔ Fault-tolerance is expensive
➔ Load-balancing

Micro-batching

● Splits incoming stream into small batches
● Batch interval inevitably limits system expressiveness
● Can be built atop Native streaming easily

Pros

➔ High-throughput
➔ Easier fault tolerance
➔ Simpler load-balancing

Cons

➔ Lower latency, depends on
batch interval

➔ Limited expressivity
➔ Harder stateful operations

Programming Model

Compositional

➔ Provides basic building blocks as
operators or sources

➔ Custom component definition
➔ Manual Topology definition &

optimization
➔ Advanced functionality often

missing

Declarative

➔ High-level API
➔ Operators as higher order functions
➔ Abstract data types
➔ Advance operations like state

management or windowing supported
out of the box

➔ Advanced optimizers

Apache Streaming Landscape

TRIDENT

Storm

● Originally created by Nathan Marz and his team at BackType in 2010
● Being acquired and later open-sourced by Twitter, Apache project top-level

since 2014
● Pioneer in large scale stream processing
● Low-level native streaming API
● Uses Thrift for topology definition
● Large number of API languages available

○ Storm Multi-Language Protocol

Trident

● Higher level micro-batching system build atop Storm
● Stream is partitioned into a small batches
● Simplifies building topologies
● Java, Clojure and Scala API
● Provides exactly once delivery
● Adds higher level operations

○ Aggregations

○ State operations

○ Joining, merging , grouping, windowing, etc.

Spark Streaming

● Spark started in 2009 at UC Berkeley, Apache since since 2013
● General engine for large scale batch processing
● Spark Streaming introduced in 0.7, came out of alpha in 0.9 (Feb 2014)
● Unified batch and stream processing over a batch runtime
● Great integration with batch processing and its build-in libraries (SparkSQL, MLlib,

GraphX)
● Scala, Java & Python API

input data
stream Spark

Streaming
Spark
Engine

batches of
input data

batches of
processed data

Samza

● Developed in LinkedIn, open-sourced in 2013
● Builds heavily on Kafka’s log based philosophy
● Pluggable messaging system and executional backend

○ Uses Kafka & YARN usually

● JVM languages, usually Java or Scala

Task 1

Task 2

Task 3

Flink

● Started as Stratosphere in 2008 at as Academic project
● Native streaming
● High level API
● Batch as special case of Streaming (bounded vs unbounded dataset)
● Provides ML (FlinkML) and graph processing (Gelly) out of the box
● Java, Scala & Python API

Stream Data

Batch Data

Kafka, RabbitMQ, ...

HDFS, JDBC, ...

System Comparison

Native Micro-batching Native Native

Compositional Declarative Compositional Declarative

At-least-once Exactly-once At-least-once Exactly-once

Record ACKs
RDD based

Checkpointing Log-based Checkpointing

Not build-in
Dedicated
Operators

Stateful
Operators

Stateful
Operators

Very Low Medium Low Low

Low Medium High High

High High Medium Low

Micro-batching

Exactly-once

Dedicated
DStream

Medium

High

Streaming
Model

API

Guarantees

Fault
Tolerance

State
Management

Latency

Throughput

Maturity

TRIDENT

Counting Words

NE Scala 2016 Apache
Apache Spark Storm
Apache Trident Flink
Streaming Samza Scala
2016 Streaming

(Apache,3)
(Streaming, 2)
(Scala, 2)
(2016, 2)
(Spark, 1)
(Storm, 1)
(Trident, 1)
(Flink, 1)
(Samza, 1)
(NE, 1)

Storm

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("spout", new RandomSentenceSpout(), 5);

 builder.setBolt("split", new Split(), 8).shuffleGrouping("spout");

 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));

 ...

 Map<String, Integer> counts = new HashMap<String, Integer>();

 public void execute(Tuple tuple, BasicOutputCollector collector) {

 String word = tuple.getString(0);

 Integer count = counts.containsKey(word) ? counts.get(word) + 1 : 1;

 counts.put(word, count);

 collector.emit(new Values(word, count));

 }

Storm

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("spout", new RandomSentenceSpout(), 5);

 builder.setBolt("split", new Split(), 8).shuffleGrouping("spout");

 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));

 ...

 Map<String, Integer> counts = new HashMap<String, Integer>();

 public void execute(Tuple tuple, BasicOutputCollector collector) {

 String word = tuple.getString(0);

 Integer count = counts.containsKey(word) ? counts.get(word) + 1 : 1;

 counts.put(word, count);

 collector.emit(new Values(word, count));

 }

Storm

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("spout", new RandomSentenceSpout(), 5);

 builder.setBolt("split", new Split(), 8).shuffleGrouping("spout");

 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));

 ...

 Map<String, Integer> counts = new HashMap<String, Integer>();

 public void execute(Tuple tuple, BasicOutputCollector collector) {

 String word = tuple.getString(0);

 Integer count = counts.containsKey(word) ? counts.get(word) + 1 : 1;

 counts.put(word, count);

 collector.emit(new Values(word, count));

 }

Trident

 public static StormTopology buildTopology(LocalDRPC drpc) {

 FixedBatchSpout spout = ...

 TridentTopology topology = new TridentTopology();

 TridentState wordCounts = topology.newStream("spout1", spout)

 .each(new Fields("sentence"),new Split(), new Fields("word"))

 .groupBy(new Fields("word"))

 .persistentAggregate(new MemoryMapState.Factory(),

 new Count(), new Fields("count"));

 ...

 }

Trident

 public static StormTopology buildTopology(LocalDRPC drpc) {

 FixedBatchSpout spout = ...

 TridentTopology topology = new TridentTopology();

 TridentState wordCounts = topology.newStream("spout1", spout)

 .each(new Fields("sentence"),new Split(), new Fields("word"))

 .groupBy(new Fields("word"))

 .persistentAggregate(new MemoryMapState.Factory(),

 new Count(), new Fields("count"));

 ...

 }

 public static StormTopology buildTopology(LocalDRPC drpc) {

 FixedBatchSpout spout = ...

 TridentTopology topology = new TridentTopology();

 TridentState wordCounts = topology.newStream("spout1", spout)

 .each(new Fields("sentence"),new Split(), new Fields("word"))

 .groupBy(new Fields("word"))

 .persistentAggregate(new MemoryMapState.Factory(),

 new Count(), new Fields("count"));

 ...

 }

Trident

 public static StormTopology buildTopology(LocalDRPC drpc) {

 FixedBatchSpout spout = ...

 TridentTopology topology = new TridentTopology();

 TridentState wordCounts = topology.newStream("spout1", spout)

 .each(new Fields("sentence"),new Split(), new Fields("word"))

 .groupBy(new Fields("word"))

 .persistentAggregate(new MemoryMapState.Factory(),

 new Count(), new Fields("count"));

 ...

 }

val conf = new SparkConf().setAppName("wordcount")
val ssc = new StreamingContext(conf, Seconds(1))

val text = ...
val counts = text.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)

counts.print()

ssc.start()
ssc.awaitTermination()

Spark Streaming

Spark Streaming

val conf = new SparkConf().setAppName("wordcount")
val ssc = new StreamingContext(conf, Seconds(1))

val text = ...
val counts = text.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)

counts.print()

ssc.start()
ssc.awaitTermination()

Spark Streaming

val conf = new SparkConf().setAppName("wordcount")
val ssc = new StreamingContext(conf, Seconds(1))

val text = ...
val counts = text.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)

counts.print()

ssc.start()
ssc.awaitTermination()

Spark Streaming

val conf = new SparkConf().setAppName("wordcount")
val ssc = new StreamingContext(conf, Seconds(1))

val text = ...
val counts = text.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)

counts.print()

ssc.start()
ssc.awaitTermination()

Samza

class WordCountTask extends StreamTask {

 override def process(envelope: IncomingMessageEnvelope,
 collector: MessageCollector, coordinator: TaskCoordinator) {

 val text = envelope.getMessage.asInstanceOf[String]

 val counts = text.split(" ")
 .foldLeft(Map.empty[String, Int]) {
 (count, word) => count + (word -> (count.getOrElse(word, 0) + 1))
 }

 collector.send(new OutgoingMessageEnvelope(new SystemStream("kafka", "wordcount"),
 counts))

 }

Samza

class WordCountTask extends StreamTask {

 override def process(envelope: IncomingMessageEnvelope,
 collector: MessageCollector, coordinator: TaskCoordinator) {

 val text = envelope.getMessage.asInstanceOf[String]

 val counts = text.split(" ")
 .foldLeft(Map.empty[String, Int]) {
 (count, word) => count + (word -> (count.getOrElse(word, 0) + 1))
 }

 collector.send(new OutgoingMessageEnvelope(new SystemStream("kafka", "wordcount"),
 counts))

 }

Samza

class WordCountTask extends StreamTask {

 override def process(envelope: IncomingMessageEnvelope,
 collector: MessageCollector, coordinator: TaskCoordinator) {

 val text = envelope.getMessage.asInstanceOf[String]

 val counts = text.split(" ")
 .foldLeft(Map.empty[String, Int]) {
 (count, word) => count + (word -> (count.getOrElse(word, 0) + 1))
 }

 collector.send(new OutgoingMessageEnvelope(new SystemStream("kafka", "wordcount"),
 counts))

 }

Flink

 val env = ExecutionEnvironment.getExecutionEnvironment

 val text = env.fromElements(...)
 val counts = text.flatMap (_.split(" "))
 .map ((_, 1))
 .groupBy(0)
 .sum(1)

 counts.print()

 env.execute("wordcount")

Flink

 val env = ExecutionEnvironment.getExecutionEnvironment

 val text = env.fromElements(...)
 val counts = text.flatMap (_.split(" "))
 .map ((_, 1))
 .groupBy(0)
 .sum(1)

 counts.print()

 env.execute("wordcount")

Fault Tolerance

● Fault tolerance in streaming systems is inherently harder that in batch
○ Can’t restart computation easily

○ State is a problem

○ Jobs can run 24/7

○ Fast recovery is critical

● A lot of challenges must be addressed
○ No single point of failure

○ Ensure processing of all incoming messages

○ State consistency

○ Fast recovery

○ Exactly once semantics is even harder

● Record acknowledgments
● Tracks the lineage of tuples in DAG as they are processed
● Special “ACK” bold track each lineage
● Able to replay from the root of failed tuples
● Performance difficulties

Storm & Trident

Reliable Processing

Acks are delivered via a system-level bolt
Acker Bolt

ack ack

{A} {B}

ACK

Spark Streaming

● Failed DStreams can be recomputed using
their lineage

● Checkpointing to persistent data storage
○ Reduce lineage length

○ Recover metadata

● Computation redistributed from failed node
● Similar to restarting Spark’s failed batch job

faster recovery by using multiple nodes for
recomputations

failed tasks

failed node

Samza

● Takes an advantage of durable, partitioned, offset based messaging system
● Task monitors its offset, which moves forward as messages are processed
● Offset is checkpointed and can be restored on failure

in
pu

t s
tr

ea
m

Checkpoint
partition 0: offset 6
partition 1: offset 4
partition 2: offset 8

Partition 0

Partition 1

Partition 2

Samza

StreamTask
partition 0

StreamTask
partition 1

StreamTask
partition 2

Flink

● Based on distributed snapshots
● Sends checkpoint barriers through the stream
● Snapshots can be stored in durable storage

data stream

checkpoint
barrier n

checkpoint
barrier n-1

part of
checkpoint n+1

part of
checkpoint n

part of
checkpoint n-1

newer records older records

Managing State

● Most of the non-trivial streaming applications have a state
● Stateful operation looks like this:

f: (input, state) -> (output, state’)

● Delivery guarantees plays crucial role
○ At least once

■ Ensure all operators see all events ~ replay stream in failure case

○ Exactly once

■ Ensure that operators do not perform duplicate updates to their state

Storm & Trident

● States available only in Trident API
● Dedicated operators for state updates and queries
● State access methods
● Difficult to implement transactional state
● Exactly once semantics*

State

Transactional Opaque
transactional

Non-
transactional

Non-
transactional

Transactional

Opaque
transactional

Sp
o

u
t No No No

No

No No

Yes Yes

Yes

● State is implemented as another
stream

○ UpdateStateByKey()

○ TrackStateByKey()

○ Requires checkpointing

● Stateless runtime by design
● Exactly-once semantics

Spark Streaming

Input Stream

Job Job Job

Output
Stream

State

Micro-batch
processing

● Stateful operators, any task can hold state
● State is stored as another log
● Ships with 2 key-value stores

○ In-memory & RocksDB

○ Possible to send updates to kafka changelog to restore

store if needed

● Great for large data sets because of localized
storage

● Can use custom storage engines
● At-least once semantics, exactly once planned

Samza

Task Task

Input
Stream

Changelog
Stream

Output
Stream

● Stateful dataflow operators (conceptually similar to Samza)
● State access patterns

○ Local (Task) state - current state of a specific operator instance, operators do not interact

○ Partitioned (Key) state - maintains state of partitions (~ keys)

● Direct API integration
○ mapWithState(), flatMapWithState(), …

● Checkpointing
○ Pluggable backends for storing snapshots

● Exactly-once semantics

Flink

Operator

S1

S2

S3

Counting Words Revisited

NE Scala 2016 Apache
Apache Spark Storm
Apache Trident Flink
Streaming Samza Scala
2016 Streaming

(Apache,3)
(Streaming, 2)
(Scala, 2)
(2016, 2)
(Spark, 1)
(Storm, 1)
(Trident, 1)
(Flink, 1)
(Samza, 1)
(NE, 1)

Trident

import storm.trident.operation.builtin.Count;

TridentTopology topology = new TridentTopology();
TridentState wordCounts =
 topology.newStream("spout1", spout)
 .each(new Fields("sentence"), new Split(), new Fields("word"))
 .groupBy(new Fields("word"))
 .persistentAggregate(new MemoryMapState.Factory(), new Count(),
 new Fields("count"))
 .parallelismHint(6);

Trident

import storm.trident.operation.builtin.Count;

TridentTopology topology = new TridentTopology();
TridentState wordCounts =
 topology.newStream("spout1", spout)
 .each(new Fields("sentence"), new Split(), new Fields("word"))
 .groupBy(new Fields("word"))
 .persistentAggregate(new MemoryMapState.Factory(), new Count(),
 new Fields("count"))
 .parallelismHint(6);

// Initial RDD input to updateStateByKey
val initialRDD = ssc.sparkContext.parallelize(List.empty[(String, Int)])

val lines = ...
val words = lines.flatMap(_.split(" "))
val wordDstream = words.map(x => (x, 1))

val trackStateFunc = (batchTime: Time, word: String, one: Option[Int], state: State[Int]) => {
 val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
 val output = (word, sum)
 state.update(sum)
 Some(output)
}

val stateDstream = wordDstream.trackStateByKey(
 StateSpec.function(trackStateFunc).initialState(initialRDD))

Spark Streaming

Spark Streaming

// Initial RDD input to updateStateByKey
val initialRDD = ssc.sparkContext.parallelize(List.empty[(String, Int)])

val lines = ...
val words = lines.flatMap(_.split(" "))
val wordDstream = words.map(x => (x, 1))

val trackStateFunc = (batchTime: Time, word: String, one: Option[Int], state: State[Int]) => {
 val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
 val output = (word, sum)
 state.update(sum)
 Some(output)
}

val stateDstream = wordDstream.trackStateByKey(
 StateSpec.function(trackStateFunc).initialState(initialRDD))

Spark Streaming

// Initial RDD input to updateStateByKey
val initialRDD = ssc.sparkContext.parallelize(List.empty[(String, Int)])

val lines = ...
val words = lines.flatMap(_.split(" "))
val wordDstream = words.map(x => (x, 1))

val trackStateFunc = (batchTime: Time, word: String, one: Option[Int], state: State[Int]) => {
 val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
 val output = (word, sum)
 state.update(sum)
 Some(output)
}

val stateDstream = wordDstream.trackStateByKey(
 StateSpec.function(trackStateFunc).initialState(initialRDD))

Spark Streaming

// Initial RDD input to updateStateByKey
val initialRDD = ssc.sparkContext.parallelize(List.empty[(String, Int)])

val lines = ...
val words = lines.flatMap(_.split(" "))
val wordDstream = words.map(x => (x, 1))

val trackStateFunc = (batchTime: Time, word: String, one: Option[Int], state: State[Int]) => {
 val sum = one.getOrElse(0) + state.getOption().getOrElse(0)
 val output = (word, sum)
 state.update(sum)
 Some(output)
}

val stateDstream = wordDstream.trackStateByKey(
 StateSpec.function(trackStateFunc).initialState(initialRDD))

Spark Streaming

// Initial RDD input to updateStateByKey
val initialRDD = ssc.sparkContext.parallelize(List.empty[(String, Int)])

val lines = ...
val words = lines.flatMap(_.split(" "))
val wordDstream = words.map(x => (x, 1))

val trackStateFunc = (batchTime: Time, word: String, one: Option[Int], state: State[Int]) => {
 val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
 val output = (word, sum)
 state.update(sum)
 Some(output)
}

val stateDstream = wordDstream.trackStateByKey(
 StateSpec.function(trackStateFunc).initialState(initialRDD))

Samza

class WordCountTask extends StreamTask with InitableTask {

 private var store: CountStore = _

 def init(config: Config, context: TaskContext) {
 this.store = context.getStore("wordcount-store").asInstanceOf[KeyValueStore[String, Integer]]
 }

 override def process(envelope: IncomingMessageEnvelope,
 collector: MessageCollector, coordinator: TaskCoordinator) {

 val words = envelope.getMessage.asInstanceOf[String].split(" ")

 words.foreach{ key =>
 val count: Integer = Option(store.get(key)).getOrElse(0)
 store.put(key, count + 1)
 collector.send(new OutgoingMessageEnvelope(new SystemStream("kafka", "wordcount"), (key, count)))
 }
 }

class WordCountTask extends StreamTask with InitableTask {

 private var store: CountStore = _

 def init(config: Config, context: TaskContext) {
 this.store = context.getStore("wordcount-store").asInstanceOf[KeyValueStore[String, Integer]]
 }

 override def process(envelope: IncomingMessageEnvelope,
 collector: MessageCollector, coordinator: TaskCoordinator) {

 val words = envelope.getMessage.asInstanceOf[String].split(" ")

 words.foreach{ key =>
 val count: Integer = Option(store.get(key)).getOrElse(0)
 store.put(key, count + 1)
 collector.send(new OutgoingMessageEnvelope(new SystemStream("kafka", "wordcount"), (key, count)))
 }
 }

Samza

class WordCountTask extends StreamTask with InitableTask {

 private var store: CountStore = _

 def init(config: Config, context: TaskContext) {
 this.store = context.getStore("wordcount-store").asInstanceOf[KeyValueStore[String, Integer]]
 }

 override def process(envelope: IncomingMessageEnvelope,
 collector: MessageCollector, coordinator: TaskCoordinator) {

 val words = envelope.getMessage.asInstanceOf[String].split(" ")

 words.foreach{ key =>
 val count: Integer = Option(store.get(key)).getOrElse(0)
 store.put(key, count + 1)
 collector.send(new OutgoingMessageEnvelope(new SystemStream("kafka", "wordcount"), (key, count)))
 }
 }

Samza

Flink

val env = ExecutionEnvironment.getExecutionEnvironment

val text = env.fromElements(...)
val words = text.flatMap (_.split(" "))

words.keyBy(x => x).mapWithState{
 (word, count: Option[Int]) =>
 {
 val newCount = count.getOrElse(0) + 1
 val output = (word, newCount)
 (output, Some(newCount))
 }
}

...

val env = ExecutionEnvironment.getExecutionEnvironment

val text = env.fromElements(...)
val words = text.flatMap (_.split(" "))

words.keyBy(x => x).mapWithState{
 (word, count: Option[Int]) =>
 {
 val newCount = count.getOrElse(0) + 1
 val output = (word, newCount)
 (output, Some(newCount))
 }
}

...

Flink

Performance

● Hard to design not biased test, lots of variables
● Latency vs. Throughput

○ 500k/node/sec is ok, 1M/node/sec is nice and >1M/node/sec is great

○ Micro-batching latency usually in seconds, native in millis

● Guarantees
● Fault-tolerance cost
● State cost
● Network operations & Data locality
● Serialization
● Lots of tuning options

Project Maturity

● Storm & Trident
○ For a long time de-facto industrial standard

○ Widely used (Twitter, Yahoo!, Groupon, Spotify, Alibaba, Baidu and many more)

○ > 180 contributors

● Spark Streaming
○ Around 40% of Spark users use Streaming in Production or Prototyping

○ Significant uptake in adoption (Netflix, Cisco, DataStax, Pinterest, Intel, Pearson, …)

○ > 720 contributors (whole Spark)

● Samza
○ Used by LinkedIn and tens of other companies

○ > 30 contributors

● Flink
○ Still emerging, first production deployments

○ > 130 contributors

Summary

Native Micro-batching Native Native

Compositional Declarative Compositional Declarative

At-least-once Exactly-once At-least-once Exactly-once

Record ACKs
RDD based

Checkpointing Log-based Checkpointing

Not in-build
Dedicated
Operators

Stateful
Operators

Stateful
Operators

Very Low Medium Low Low

Low Medium High High

High High Medium Low

Micro-batching

Exactly-once

Dedicated
DStream

Medium

High

Streaming
Model

API

Guarantee

Fault
Tolerance

State
Management

Latency

Throughput

Maturity

TRIDENT

General Guidelines

● As always it depends
● Always evaluate particular application needs
● Fully understand internals improper use may have disastrous consequences
● Prefer High Level API
● Usually wants exactly once delivery
● Almost all non-trivial jobs have state
● Fast recovery is critical

○ Use Chaos Monkey or similar tool to be sure

Framework Recommendations

● Storm & Trident
○ Great fit for small and fast tasks

○ Very low (tens of milliseconds) latency

○ State & Fault tolerance degrades performance significantly

○ Potential update to Heron

■ Keeps API, according to Twitter better in every single way

■ Future open-sourcing is uncertain

● Spark Streaming
○ If Spark is already part of your infrastructure

○ Take advantage of various Spark libraries

○ Lambda architecture

○ Latency is not critical

○ Micro-batching limitations

Framework Recommendations

● Samza
○ Kafka is a cornerstone of your architecture

○ Application requires large states

○ At least once delivery is fine

● Flink
○ Conceptually great, fits very most use cases

○ Take advantage of batch processing capabilities

○ Need a functionality which is hard to implement in micro-batch

○ Enough courage to use emerging project

Dataflow and Apache Beam

Questions

Thank you

● Jobs at www.cakesolutions.net/careers

● Mail petrz@cakesolutions.net

● Twitter @petr_zapletal

