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● 8 Zettabytes (1 ZB = 1021 B = 1 billion TB) created in 2015
● Every minute we create

○ 200 million emails

○ 48 hours of YouTube video

○ 2 million google queries

○ 200 000 tweets

○ ...

● How can we make sense of all data
○ Most data is not interesting

○ New data supersedes old data

○ Challenge is not only storage but processing

The Data Deluge



New Sources And New Use Cases

●  Many new sources of data become 
available

○ Sensors

○ Mobile devices

○ Web feeds

○ Social networking

○ Cameras

○ Databases

○ ...

● Even more use cases become viable
○ Web/Social feed mining

○ Real-time data analysis

○ Fraud detection

○ Smart order routing

○ Intelligence and surveillance

○ Pricing and analytics

○ Trends detection

○ Log processing

○ Real-time data aggregation

○ …



Stream Processing to the Rescue

● Process data streams on-the-fly without permanent storage

● Stream data rates can be high

○ High resource requirements for processing (clusters, data centres)

● Processing stream data has real-time aspect

○ Latency of data processing matters

○ Must be able to react to events as they occur



Streaming Applications

ETL Operations

● Transformations, joining or filtering of incoming data

Windowing

● Trends in bounded interval, like tweets or sales



Streaming Applications

Machine Learning

● Clustering, Trend fitting, Classification

Pattern Recognition

● Fraud detection, Signal triggering, 
Anomaly detection 



Processing Architecture Evolution
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Distributed Stream Processing

● Continuous processing, aggregation and analysis of unbounded data
● General computational model as MapReduce
● Expected latency in milliseconds or seconds
● Systems often modelled as Directed Acyclic Graph (DAG)

● Describes topology of streaming job
● Data flows through chain of processors 

from sources to sinks



Points of Interest

● Runtime and programming model 

● Primitives

● State management

● Message delivery guarantees

● Fault tolerance & Low overhead recovery

● Latency, Throughput & Scalability

● Maturity and Adoption Level

● Ease of development and operability



Runtime and Programming Model

● Most important trait of stream processing system

● Defines expressiveness, possible operations and its limitations

● Therefore defines systems capabilities and its use cases



Native Streaming

Native stream processing systems
continuous operator model

record

Source Operator

Processing Operator

Processing Operator

Sink Operator

records processed one at a time



Micro-batching

Receiver

records

Processing Operator

Micro-batches 

Records processed in short batches

Sink 
Operator

Processing Operator



Native Streaming

● Records are processed as they arrive
● Native model with general processing ability

Pros

➔ Expressiveness 
➔ Low-latency
➔ Stateful operations

Cons

➔ Throughput
➔ Fault-tolerance is expensive
➔ Load-balancing



Micro-batching

● Splits incoming stream into small batches
● Batch interval inevitably limits system expressiveness
● Can be built atop Native streaming easily

Pros

➔ High-throughput
➔ Easier fault tolerance
➔ Simpler load-balancing

Cons

➔ Lower latency, depends on 
batch interval

➔ Limited expressivity
➔ Harder stateful operations



Programming Model

Compositional

➔ Provides basic building blocks as 
operators or sources

➔ Custom component definition
➔ Manual Topology definition & 

optimization
➔ Advanced functionality often 

missing

Declarative

➔ High-level API
➔ Operators as higher order functions
➔ Abstract data types
➔ Advance operations like state 

management or windowing supported 
out of the box

➔ Advanced optimizers



Apache Streaming Landscape

TRIDENT



Storm

● Originally created by Nathan Marz and his team at BackType in 2010
● Being acquired and later open-sourced by Twitter, Apache project top-level 

since 2014
● Pioneer in large scale stream processing
● Low-level native streaming API 
● Uses Thrift for topology definition
● Large number of API languages available

○ Storm Multi-Language Protocol 



Trident

● Higher level micro-batching system build atop Storm
● Stream is partitioned into a small batches
● Simplifies building topologies
● Java, Clojure and Scala API
● Provides exactly once delivery
● Adds higher level operations

○ Aggregations

○ State operations

○ Joining, merging , grouping, windowing, etc.



Spark Streaming

● Spark started in 2009 at UC Berkeley, Apache since since 2013
● General engine for large scale batch processing
● Spark Streaming introduced in 0.7, came out of alpha in 0.9 (Feb 2014)
● Unified batch and stream processing over a batch runtime
● Great integration with batch processing and its build-in libraries (SparkSQL, MLlib, 

GraphX)
● Scala, Java & Python API

input data 
stream Spark 

Streaming
Spark 
Engine

batches of 
input data

batches of 
processed data



Samza

● Developed in LinkedIn, open-sourced in 2013
● Builds heavily on Kafka’s log based philosophy
● Pluggable messaging system and executional backend

○ Uses Kafka & YARN usually

● JVM languages, usually Java or Scala

Task 1

Task 2

Task 3



Flink

● Started as Stratosphere in 2008 at as Academic project
● Native streaming 
● High level API
● Batch as special case of Streaming (bounded vs unbounded dataset)
● Provides ML (FlinkML) and graph processing (Gelly) out of the box
● Java, Scala & Python API

Stream Data

Batch Data

Kafka, RabbitMQ, ...

HDFS, JDBC, ...



System Comparison

Native Micro-batching Native Native
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Storm

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("spout", new RandomSentenceSpout(), 5);

 builder.setBolt("split", new Split(), 8).shuffleGrouping("spout");

 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));

    ...

 Map<String, Integer> counts = new HashMap<String, Integer>();

 public void execute(Tuple tuple, BasicOutputCollector collector) {

    String word = tuple.getString(0);

    Integer count = counts.containsKey(word) ? counts.get(word) + 1 : 1;

    counts.put(word, count);

    collector.emit(new Values(word, count));

 }
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Trident

 public static StormTopology buildTopology(LocalDRPC drpc) {

    FixedBatchSpout spout = ...

    TridentTopology topology = new TridentTopology();

    TridentState wordCounts = topology.newStream("spout1", spout)

 .each(new Fields("sentence"),new Split(), new Fields("word"))

 .groupBy(new Fields("word"))

 .persistentAggregate(new MemoryMapState.Factory(), 

     new Count(), new Fields("count"));

    ...

 }



Trident
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Trident

 public static StormTopology buildTopology(LocalDRPC drpc) {

    FixedBatchSpout spout = ...
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val conf = new SparkConf().setAppName("wordcount")
val ssc = new StreamingContext(conf, Seconds(1))

val text = ...
val counts = text.flatMap(line => line.split(" "))
                 .map(word => (word, 1))
                 .reduceByKey(_ + _)

counts.print()

ssc.start()
ssc.awaitTermination()

Spark Streaming
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Spark Streaming
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Samza

class WordCountTask extends StreamTask {

  override def process(envelope: IncomingMessageEnvelope,
    collector: MessageCollector, coordinator: TaskCoordinator) {

    val text = envelope.getMessage.asInstanceOf[String]

    val counts = text.split(" ")
      .foldLeft(Map.empty[String, Int]) {
        (count, word) => count + (word -> (count.getOrElse(word, 0) + 1))
      }

    collector.send(new OutgoingMessageEnvelope(new SystemStream("kafka", "wordcount"),
      counts))

  }
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Samza
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Flink

    val env = ExecutionEnvironment.getExecutionEnvironment

    val text = env.fromElements(...)
    val counts = text.flatMap ( _.split(" ") )
      .map ( (_, 1) )
      .groupBy(0)
      .sum(1)

    counts.print()

    env.execute("wordcount")

  



Flink

    val env = ExecutionEnvironment.getExecutionEnvironment

    val text = env.fromElements(...)
    val counts = text.flatMap ( _.split(" ") )
      .map ( (_, 1) )
      .groupBy(0)
      .sum(1)

    counts.print()

    env.execute("wordcount")

  



Fault Tolerance

● Fault tolerance in streaming systems is inherently harder that in batch
○ Can’t restart computation easily

○ State is a problem

○ Jobs can run 24/7

○ Fast recovery is critical

● A lot of challenges must be addressed 
○ No single point of failure

○ Ensure processing of all incoming messages

○ State consistency

○ Fast recovery

○ Exactly once semantics is even harder



● Record acknowledgments
● Tracks the lineage of tuples in DAG as they are processed
● Special “ACK” bold track each lineage
● Able to replay from the root of failed tuples
● Performance difficulties

Storm & Trident

Reliable Processing

Acks are delivered via a system-level bolt
Acker Bolt

ack ack

{A} {B}

ACK



Spark Streaming

● Failed DStreams can be recomputed using 
their lineage

● Checkpointing to persistent data storage
○ Reduce lineage length

○ Recover metadata

● Computation redistributed from failed node
● Similar to restarting Spark’s failed batch job

faster recovery by using multiple nodes for 
recomputations

failed tasks

failed node



Samza

● Takes an advantage of durable, partitioned, offset based messaging system
● Task monitors its offset, which moves forward as messages are processed
● Offset is checkpointed and can be restored on failure

in
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Checkpoint
partition 0: offset 6
partition 1: offset 4
partition 2: offset 8

Partition 0

Partition 1

Partition 2

Samza

StreamTask 
partition 0

StreamTask 
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StreamTask 
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Flink

● Based on distributed snapshots
● Sends checkpoint barriers through the stream
● Snapshots can be stored in durable storage

data stream

checkpoint 
barrier n

checkpoint 
barrier n-1

part of 
checkpoint n+1

part of 
checkpoint n

part of 
checkpoint n-1

newer records older records



Managing State

● Most of the non-trivial streaming applications have a state
● Stateful operation looks like this:

f: (input, state) -> (output, state’)

● Delivery guarantees plays crucial role
○ At least once

■ Ensure all operators see all events ~ replay stream in failure case

○ Exactly once

■ Ensure that operators do not perform duplicate updates to their state



Storm & Trident

● States available only in Trident API
● Dedicated operators for state updates and queries 
● State access methods 
● Difficult to implement transactional state
● Exactly once semantics*

State

Transactional Opaque
transactional

Non-
transactional

Non-
transactional

Transactional

Opaque
transactional

Sp
o

u
t No No No

No

No No

Yes Yes

Yes



● State is implemented as another 
stream

○ UpdateStateByKey()

○ TrackStateByKey()

○ Requires checkpointing

● Stateless runtime by design
● Exactly-once semantics

Spark Streaming

Input Stream

Job Job Job

Output 
Stream

State

Micro-batch 
processing



● Stateful operators, any task can hold state
● State is stored as another log 
● Ships with 2 key-value stores 

○ In-memory & RocksDB

○ Possible to send updates to kafka changelog to restore 

store if needed

● Great for large data sets because of localized 
storage

● Can use custom storage engines
● At-least once semantics, exactly once planned

Samza

Task Task

Input 
Stream

Changelog 
Stream

Output 
Stream



● Stateful dataflow operators (conceptually similar to Samza)
● State access patterns

○ Local (Task) state - current state of a specific operator instance, operators do not interact

○ Partitioned (Key) state - maintains state of partitions (~ keys)

● Direct API integration
○ mapWithState(), flatMapWithState(), …

● Checkpointing
○ Pluggable backends for storing snapshots

● Exactly-once semantics

Flink

Operator

S1

S2

S3
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Trident

import storm.trident.operation.builtin.Count;

TridentTopology topology = new TridentTopology();        
TridentState wordCounts =
     topology.newStream("spout1", spout)
       .each(new Fields("sentence"), new Split(), new Fields("word"))
       .groupBy(new Fields("word"))
       .persistentAggregate(new MemoryMapState.Factory(), new Count(),
           new Fields("count"))                
       .parallelismHint(6);
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       .parallelismHint(6);



// Initial RDD input to updateStateByKey
val initialRDD = ssc.sparkContext.parallelize(List.empty[(String, Int)])

val lines = ...
val words = lines.flatMap(_.split(" "))
val wordDstream = words.map(x => (x, 1))

val trackStateFunc = (batchTime: Time, word: String, one: Option[Int], state: State[Int]) => {
   val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
   val output = (word, sum)
   state.update(sum)
   Some(output)
}

val stateDstream = wordDstream.trackStateByKey(
   StateSpec.function(trackStateFunc).initialState(initialRDD))
    

Spark Streaming
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Samza

class WordCountTask extends StreamTask with InitableTask {

  private var store: CountStore = _

  def init(config: Config, context: TaskContext) {
    this.store = context.getStore("wordcount-store").asInstanceOf[KeyValueStore[String, Integer]]
  }

  override def process(envelope: IncomingMessageEnvelope,
    collector: MessageCollector, coordinator: TaskCoordinator) {

    val words = envelope.getMessage.asInstanceOf[String].split(" ")

    words.foreach{ key =>
      val count: Integer = Option(store.get(key)).getOrElse(0)
      store.put(key, count + 1)
      collector.send(new OutgoingMessageEnvelope(new SystemStream("kafka", "wordcount"), (key, count)))
    }
  }
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Flink

val env = ExecutionEnvironment.getExecutionEnvironment

val text = env.fromElements(...)
val words = text.flatMap ( _.split(" ") )

words.keyBy(x => x).mapWithState{
   (word, count: Option[Int]) =>
    {
       val newCount = count.getOrElse(0) + 1
       val output = (word, newCount)
       (output, Some(newCount))
    }
}

...

  



val env = ExecutionEnvironment.getExecutionEnvironment

val text = env.fromElements(...)
val words = text.flatMap ( _.split(" ") )

words.keyBy(x => x).mapWithState{
   (word, count: Option[Int]) =>
    {
       val newCount = count.getOrElse(0) + 1
       val output = (word, newCount)
       (output, Some(newCount))
    }
}

...

  

Flink



Performance

● Hard to design not biased test, lots of variables
● Latency vs. Throughput

○ 500k/node/sec is ok, 1M/node/sec is nice and >1M/node/sec is great

○ Micro-batching latency usually in seconds, native in millis

● Guarantees
● Fault-tolerance cost
● State cost
● Network operations & Data locality
● Serialization
● Lots of tuning options



Project Maturity

● Storm & Trident
○ For a long time de-facto industrial standard

○ Widely used (Twitter, Yahoo!, Groupon, Spotify, Alibaba, Baidu and many more)

○ > 180 contributors

● Spark Streaming
○ Around 40% of Spark users use Streaming in Production or Prototyping

○ Significant uptake in adoption (Netflix, Cisco, DataStax, Pinterest, Intel, Pearson, … )

○ > 720 contributors (whole Spark)

● Samza
○ Used by LinkedIn and tens of other companies

○ > 30 contributors

● Flink
○ Still emerging, first production deployments

○ > 130 contributors



Summary
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General Guidelines

● As always it depends 
● Always evaluate particular application needs
● Fully understand internals improper use may have disastrous consequences
● Prefer High Level API
● Usually wants exactly once delivery
● Almost all non-trivial jobs have state
● Fast recovery is critical

○ Use Chaos Monkey or similar tool to be sure



Framework Recommendations

● Storm & Trident
○ Great fit  for small and fast tasks

○ Very low (tens of milliseconds) latency

○ State & Fault tolerance degrades performance significantly

○ Potential update to Heron

■ Keeps API, according to Twitter better in every single  way

■ Future open-sourcing is uncertain

● Spark Streaming
○ If Spark is already part of your infrastructure

○ Take advantage of various Spark libraries

○ Lambda architecture

○ Latency is not critical

○ Micro-batching limitations



Framework Recommendations

● Samza
○ Kafka is a cornerstone of your architecture

○ Application requires large states

○ At least once delivery is fine

● Flink
○ Conceptually great, fits very most use cases

○ Take advantage of batch processing capabilities

○ Need a functionality which is hard to implement in micro-batch

○ Enough courage to use emerging project 



Dataflow and Apache Beam



Questions



Thank you

● Jobs at www.cakesolutions.net/careers

● Mail petrz@cakesolutions.net

● Twitter @petr_zapletal 


