or: How | Learned To Stop Worrying and Mumbling “INTF2!21"

What Are Macros?

(There's some really good documentation)

2 The"WTF" of Macros - NEScala '16

http://docs.scala-lang.org/overviews/macros/overview.html

one word

\

.
in
\4

rize it

¥ |

4 The "WTF" of Macros - NEScala '16

But Seriously, What 4rc Macros?

= ‘metaprogramming, from the Latin: 'WTF?"
» | mean, “code that writes code”

= \Write ‘extensions’ to Scala which are evaluated/expanded at
compile time.

= Macros may generate new code or simply evaluate existing code.

5 The "WTF" of Macros - NEScala '16

= Def Macros are used to write, essentially, new methods.

= Facility for us to write powerful new syntax that feels ‘built-in;, such as Shapeless' “This
Shouldn't Compile” 111Typed macro...

Sca1a> illTyPEd { "141 o Int""" }

<console>:19: error: Type-checking succeeded unexpectedly.
Expected some error.

i11Typed { """1+41 : Int""" }

A

6 The "WTF" of Macros - NEScala '16

» Annotations Macros let us write annotations which can be then rewritten or
expanded at compile time:

@hello

object Test extends App {

println(this.hello)
}

» ... And a lot more.

7 The"WTF" of Macros - NEScala '16

I'm Hoping To Make This Easy
For You

= |'m pretty new to this Macro thing, and
noping to share knowledge from a
peginner's standpoint.

= Without naming names, many Macros
talks are given by Deeply Scary
Sorcerers and Demigods who
sometimes forget how hard this stuff is
for newbies.

» Let's take a look at this through really
fresh, profusely bleeding eyeballs.

8 The"WTF" of Macros - NEScala '16

Once Upon A Time...

= The only way to add compile time functionality to Scala was by writing
compiler plugins.

» Esoteric, harder to ship (i.e. user must include a compiler plugin), not a lot of
docs or examples.

» Required deep knowledge of the AST: Essentially generating new Scala by
hand-coding ASTs.

» |'ve done a little bit of compiler plugin work: the AST can be tough to deal with.?

" Abstract Syntax Tree. A simple “tree” of case-class like objects to be converted to bytecode... or JavaScript.
5 Some of the cool stuff in Macros like Quasiquotes can be used in Compiler Plugins now, too.

9 The "WTF" of Macros - NEScala '16

An AST Amuse Bouche

Given a small piece of Scala code, what might the AST look like?

class StringIntexp ({
val int = 42
val dbl = Math.PI

val str = "My hovercraft is full of eels™

println(s"String: Sstr Double: $Sdbl Int: Sint Int Expr: $S{int % 1.0}")
}

10 The "WTF" of Macros - NEScala '16

My God... It's Full of ... Uhm

Block(
List(
ClassDef (Modifiers(), TypeName("StringInterp"), List(), Template(
List(Ident(TypeName(AnyRef"))), noSelfType, List(DefDef(Modifiexrs(), termNames.CONSTRUCTOR,
List(),
List(List()),
TypeTree(), Block(List(Apply(Select(Supexr(This(typeNames.EMPTY), typeNames.EMPTY),
termNames.CONSTRUCTOR), List())), Literal(Constant(())))), ValDef(Modifiers(), TermName("int"),
TypeTree(), Literal(Constant(42))), ValDef(Modifiers(), TermName("dbl"), TypeTree(),
Literal(Constant(3.141592653589793))), ValDef(Modifiers(), TermName('str"), TypeTree(),
Literal(Constant("My hovercraft is full of eels"))), Apply(Select(Ident(scala.Predef),
TexrmName("“println")), List(Apply(Select(Apply(Select(Ident(scala.StringContext), TexrmName("apply")),
List(Literal(Constant("String: ")), Literal(Constant(" Double: ")), Literal(Constant(" Int: ")),
Literal(Constant(" Int Expr: ")), Literal(Constant("")))), TermName("s")),
List(Select(This(TypeName("“StringIntexp"”)), TermName("str")), Select(This(TypeName("StringIntexp")),
TermName("dbl")), Select(This(TypeName("StringIntexp")), TexrmName("int")),
Apply(Select(Select(This(TypeName("StringIntexp"”)), TexrmName("int")), TermName("Stimes")),
List(Literal(Constant(1.0)))))))))
))), Literal(Constant(())))

11 The "WTF" of Macros - NEScala '16

Enter The Macro

= Since Scala 2.10, Macros have shipped as an experimental feature.
= Seem to have been adopted fairly quickly: | see them all over the place.

» AST Knowledge can be somewhat avoided, with some really cool tools
to generate it for you.

» Macros make enhancing Scala much easier than writing compiler
plugins.

= NOTE: You need to define your macros in a separate project / library
from anywhere you call it.

13 The "WTF" of Macros - NEScala '16

= The Macro project for Scala is evolving guickly.
= They release and add new features far more frequently than Scala does.

= “"Macro Paradise” is a compiler plugin meant to bring Macro improvements into
Scala" as they become available.

= One of the features currently existing purely in Macro Paradise is Macro
Annotations.

= You can learn more about Macro Paradise at http:/docs.scala-lang.org/overviews/
macros/paradise.html

" Focused on reliability with the current production release of Scala.

15 The "WTF" of Macros - NEScala '16

http://docs.scala-lang.org/overviews/macros/paradise.html
http://docs.scala-lang.org/overviews/macros/paradise.html

Macro Annotations
ADT Validation

= Macro Annotations let us build annotations that expand via Macros.

= |'ve written a Macro that verifies the "Root" type of an ADT is valid.
The rules:

= The root type must be either a trait or an abstract class.
= The root type must be sealed.

= |'ve done this with AST manipulation to demo what that looks like.

16 The "WTF" of Macros - NEScala '16

Macro Annotations
ADT Validation

= You can find this code at https:/github.com/bwmcadams/supreme-
macro-adventure

» | was feeling whimsical, and used part of a suggested random
repo name from Github...

= Let's look at some chunks of ScalaTest “should compile” / “should
not compile” code | use to validate my ADT Macro

17 The "WTF" of Macros - NEScala '16

https://github.com/bwmcadams/supreme-macro-adventure
https://github.com/bwmcadams/supreme-macro-adventure

Macro Annotations
ADT Validation

"A test of annotating stuff with the ADT Compiler Annotation" should "Reject an unsealed trait" in {

| @ADT trait Foo

.stripMargin mustNot compile

it should "Reject a Singleton Object" in {

| @GADT object Bar

.stripMargin mustNot compile

18 The "WTF" of Macros - NEScala '16

Macro Annotations
ADT Validation

it should "Approve a sealed trait" in {

| @QADT sealed trait Spam {
| def x: Int

|}

", stripMargin must compile

it should "Approve a sealed, abstract class" in {

| @ADT sealed abstract class Eggs

.stripMargin must compile

19 The "WTF" of Macros - NEScala '16

Macro Annotations
ADT Validation

it should "Approve a sealed trait with type parameters" in {

| @ADT sealed trait Klang[T] {
| def x: Int
|}

"t stripMargin must compile

it should "Approve a sealed, abstract class with type parameters" in {

| @ADT sealed abstract class Odersky[T]

.stripMargin must compile

20 The "WTF" of Macros - NEScala '16

ADT Validation

» First, we need to define an annotation:
@compileTimeOnly("Enable Macro Paradise for Expansion of Annotations via
Macros.")
final class ADT extends StaticAnnotation {

def macroTransform(annottees: Any*): Any = macxro ADTMacros.annotation_impl

}

= @compileTimeOnly makes sure we've enabled Macro Paradise: otherwise, our annotation fails to
expand at compile time.

= macroTransform delegates to an actual Macro implementation which validates our ‘annottees’

21 The "WTF" of Macros - NEScala '16

ADT Validation

= This annotation macro is called once per annotated class. The fact that it has to
take varargs can be confusing.

= |If you annotate a class with a companion object, both are passed in.

= |f you annotate an object with a companion class, only the object is passed in.

= You must return both from your macro, or you get an error: top-level class

with companion can only expand into a block consisting in

eponymous companions

22 The "WTF" of Macros - NEScala '16

The Code...

\We could do this with the AST...

def annotation_impl(c: whitebox.Context)(annottees: c.Expr[Any]*): c.Expx[Any] = {
import c.universe._
import Flag._
val p = c.enclosingPosition
val inputs = annottees.map(_.tree).tolList
val result: Tree = {

// Tree manipulation code

/] if no errors, return the original syntax tree

c.Expr[Any](xesult)

23 The "WTF" of Macros - NEScala '16

Matching Our Tree

inputs match {
// both classes & traits
case (cD @ ClassDef(mods, name, tparams, impl)) :: Nil =

validateClassDef(cD, mods, name, tparams, impl, companion = None)

// annotated class with companion object.

: (mD: ModuleDef) :: Nil =
Some(mD))

case (cD @ ClassDef(mods, name, tparams, impl))

validateClassDef(cD, mods, name, tparams, impl, companion
case (o @ ModuleDef(_, name, _)) :: Nil =

c.exror(p, s"ADT Roots (object S$Sname) may not be Objects.")
0
// ... corner cases such as vals, vars, defs

24 The "WTF" of Macros - NEScala '16

Matching Our Tree

case X :: Nil =

c.error(p, s"Invalid ADT Root ($x) [${x.getClass}].")

X
case Nil =

c.exrroxr(p, "Cannot validate ADT Root of empty Tree.")
// the exrxors should cause us to stop before this but needed to match up our match type
reify {}.tree

25 The "WTF" of Macros - NEScala '16

def validateClassDef(cD: c.universe.ClassDef, mods: c.universe.Modifiers,

name: c.universe.TypeName, tparams: List[c.universe.TypeDef],
impl: c.universe.Template, companion: Option[ModuleDef]): c.universe.Tree = {

if (mods.hasFlag(TRAIT)) ({

if (!mods.hasFlag(SEALED)) {
c.exroxr(p, s"ADT Root traits (trait Sname) must be sealed.™)

}

else {
c.info(p, s"ADT Root trait Sname sanity checks OK.", force = true)

}

companion match {
case Some(mD) = q"ScD; SmD"

case None = cD

26 The "WTF" of Macros - NEScala '16

} else if (!mods.hasFlag(ABSTRACT)) {
c.exrroxr(p, s"ADT Root classes (class Sname) must be abstract.™)
cD
} else if (!mods.hasFlag(SEALED)) {
// class that's abstract
c.exxror(p, s"ADT Root classes (abstract class $Sname) must be sealed.")
cD
} else {
c.info(p, s"ADT Root class Sname sanity checks OK.", force = true)
companion match {
// Using ClassDef match, Scala requires tree includes all annottees (companions) sent in.
case Some(mD) = q"ScD; SmD"

case None = cD

27 The "WTF" of Macros - NEScala '16

Macros & The AST

= Macros are still really built with the AST, but lately Macros provide
tools to generate ASTs from code (which is what | use, mostly).

= The first, and simplest, is xeify, which we can use to generate an
AST for us.

29 The "WTF" of Macros - NEScala '16

Peeking at AST Examples for “Inspiration™

Remember my first example of the AST? | actually printed it out using reify:

println(showRaw(reify {
class StringInterp {
val int = 42
val dbl = Math.PI

val str = "My hovercraft is full of eels”
println(s"String: $str Double: $dbl Int: $Sint Int Expr: ${int % 1.0}")

}
}.tree))

.tree will replace the xreify ‘expansion’ code with the AST associated. showRaw converts it to a
printable format for us.

30 The "WTF" of Macros - NEScala '16

e ——

C

COMEDY

31 The "WTF" of Macros - NEScala '16 TVHINZG

Quasiquotes for More Sanity

= There's really no way — yet — to avoid the AST Completely. But the
Macro system continues to improve to give us ways to use it less
and less.

= Quasiquotes, added in Scala 2.11, lets us write the equivalent of
String Interpolation code that ‘evals’ to a Syntax Tree.

» We'll introduce Quasiquotes, and, time permitting, we're going to
also look at a Quasiquotes version of the ADT Macro.

32 The "WTF" of Macros - NEScala '16

Quasiquotes in Action

Setting Up Our imports
There are some implicits we need in scope for Quasiquotes Ah, the joy of imports...

import language.experimental.macros

import reflect.macros.Context

import scala.annotation.StaticAnnotation
import scala.reflect.runtime. {universe => ru}

import ru._

Now we're ready to generate some Syntax Trees!

33 The "WTF" of Macros - NEScala '16

Quasiquotes in Action
Writing Some Trees

Quasiquotes look like String Interpolation, but we place a q in front of
our string instead of s... and generate code!

scala> q"def echo(str: String): String = str"

res4: reflect.runtime.universe.DefDef =
def echo(stxr: String): String = str

34 The "WTF" of Macros - NEScala '16

Quasiquotes in Action

Writing Some Trees

scala> val wtfException = q"""
case class OMGWTFBBQ(message: String = null)
extends Exception

with scala.util.control.NoStackTrace

wtfException: reflect.runtime.universe.ClassDef =
case class OMGWTFBBQ_extends Exception with scala.util.control.NoStackTrace
with scala.Product with scala.Serializable {
<caseaccessor> <paramaccessor> val message: String = _;
def <init>(message: String = null) = {
super.<init>();

()

35 The "WTF" of Macros - NEScala '16

Extracting with Quasiquotes

It turns out Quasiquotes can do extraction too, which | find sort of fun.

scala> val q"""case class Scname[..$Stpaxams](..Sparams)

extends Sparent with ..Straits { ..Sbody }""" = wtfException

cname: reflect.runtime.universe.TypeName = OMGWTFBBQ_
List()

tparams: List[reflect.runtime.universe.TypeDef]
params: List[reflect.xruntime.universe.ValDef] =

List(<caseaccessor> <paramaccessor> val message: String = null)
parent: reflect.runtime.universe.Tree = Exception

traits: List[reflect.runtime.universe.Tree] List(scala.util.control.NoStackTrace)

body: List[reflect.runtime.universe.Tree] = List()

36 The "WTF" of Macros - NEScala '16

BRILLEIANT!

37 The "WTF" of Macros - NEScala '16

ADT Macro with Quasiquotes

= With Quasiquotes, we can implement our ADT in a pure match with
pattern guards.

= |tis nearly half the # of lines.

38 The "WTF" of Macros - NEScala '16

Traits & Classes Validation

val result: Tree = inputs match {
case (t @ q"Smods trait Sname[..Stparams] extends ..Sparents { ..Sbody }") :: Nil
if mods.hasFlag(SEALED) =

c.info(p, s"ADT Root trait Sname sanity checks OK.", force = true)
t
case (t @ q"Smods trait Sname[..Stparams] extends ..Sparents { ..Sbody }") :: Nil =

c.error(p, s"ADT Root traits (trait Sname) must be sealed.")
t

39 The "WTF" of Macros - NEScala '16

Classes Validation

// there's no bitwise AND (just OR) on Flags
case (cls @ q"Smods class Sname[..Stparams] extends ..Sparents { ..Sbody }") :: Nil
if mods.hasFlag(ABSTRACT) 8&8& mods.hasFlag(SEALED) =

c.info(p, s"ADT Root class Sname sanity checks OK.", force = true)
cls
case (cls @ q"Smods class Sname[..Stparams] extends ..Sparents { ..Sbody }") :: Nil =

c.exxror(p, s"ADT Root classes (class Sname) must be abstract and sealed.")
cls

40 The "WTF" of Macros - NEScala '16

Singletons & Trait Companions Validation

case (o @ g"Smods object Sname") :: Nil =
c.exxor(p, s"ADT Roots (object Sname) may not be Objects.")

(o)

// companions
case (t @ q"Smods trait Sname[..Stparams] extends ..Sparents { ..Sbody }") ::

(mD: ModuleDef):: Nil
if mods.hasFlag(SEALED) =

c.info(p, s"ADT Root trait Sname sanity checks OK.", force = true)

ql|$t; $mD||
case (t @ q"Smods trait Sname[..Stparams] extends ..Sparents { ..Sbody }") ::

(mD: ModuleDef) :: Nil =
c.exror(p, s"ADT Root traits (trait Sname) must be sealed.")

q"St; SmD"

41 The "WTF" of Macros - NEScala '16

Singletons & Trait Companions Validation

// there's no bitwise AND (just OR) on Flags

case (cls @ q"Smods class Sname[..Stparams] extends ..Sparents { ..Sbody }") ::
(mD: ModuleDef) :: Nil =

c.info(p, s"ADT Root class Sname sanity checks OK.", force = true)
q"Scls; SmD"

case (cls @ q"Smods class Sname[..Stparams] extends ..Sparents { ..Sbody }")
:: (mD: ModuleDef) :: Nil =

c.exror(p, s"ADT Root classes (class Sname) must be abstract and sealed.")
q"Scls; SmD"

42 The "WTF" of Macros - NEScala '16

Y YAWESOME

AWESOME TH»E IVIAUXS

Closing Thoughts

= Macros are undoubtedly cool, and rapidly evolving. But be cautious.

» “When all you have is a hammer, everything starts to look like a
thumb..”

— [Me

= Macros can enable great development, but also hinder it if overused.
Think carefully about their introduction, and their impact on your
codebase.

44 The "WTF" of Macros - NEScala '16

45 The "WTF" of Macros - NEScala '16

*OUuEnNow.cH

