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What Are Macros?

(There's some really good documentation)
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But Seriously, What 4rc Macros?

= ‘metaprogramming, from the Latin: 'WTF?"
» | mean, “code that writes code”

= \Write ‘extensions’ to Scala which are evaluated/expanded at
compile time.

= Macros may generate new code or simply evaluate existing code.
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= Def Macros are used to write, essentially, new methods.

= Facility for us to write powerful new syntax that feels ‘built-in;, such as Shapeless' “This
Shouldn't Compile” 111Typed macro...

Sca1a> illTyPEd { "141 o Int""" }

<console>:19: error: Type-checking succeeded unexpectedly.
Expected some error.

i11Typed { """1+41 : Int""" }

A
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» Annotations Macros let us write annotations which can be then rewritten or
expanded at compile time:

@hello

object Test extends App {

println(this.hello)
}

» ... And a lot more.
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I'm Hoping To Make This Easy
For You

= |'m pretty new to this Macro thing, and
noping to share knowledge from a
peginner's standpoint.

= Without naming names, many Macros
talks are given by Deeply Scary
Sorcerers and Demigods who
sometimes forget how hard this stuff is
for newbies.

» Let's take a look at this through really
fresh, profusely bleeding eyeballs.
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Once Upon A Time...

= The only way to add compile time functionality to Scala was by writing
compiler plugins.

» Esoteric, harder to ship (i.e. user must include a compiler plugin), not a lot of
docs or examples.

» Required deep knowledge of the AST: Essentially generating new Scala by
hand-coding ASTs.

» |'ve done a little bit of compiler plugin work: the AST can be tough to deal with.?

" Abstract Syntax Tree. A simple “tree” of case-class like objects to be converted to bytecode... or JavaScript.
5 Some of the cool stuff in Macros like Quasiquotes can be used in Compiler Plugins now, too.
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An AST Amuse Bouche

Given a small piece of Scala code, what might the AST look like?

class StringIntexp ({
val int = 42
val dbl = Math.PI

val str = "My hovercraft is full of eels™

println(s"String: Sstr Double: $Sdbl Int: Sint Int Expr: $S{int % 1.0}")
}
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My God... It's Full of ... Uhm

Block(
List(
ClassDef (Modifiers(), TypeName("StringInterp"), List(), Template(
List(Ident(TypeName(AnyRef"))), noSelfType, List(DefDef(Modifiexrs(), termNames.CONSTRUCTOR,
List(),
List(List()),
TypeTree(), Block(List(Apply(Select(Supexr(This(typeNames.EMPTY), typeNames.EMPTY),
termNames.CONSTRUCTOR), List())), Literal(Constant(())))), ValDef(Modifiers(), TermName("int"),
TypeTree(), Literal(Constant(42))), ValDef(Modifiers(), TermName("dbl"), TypeTree(),
Literal(Constant(3.141592653589793))), ValDef(Modifiers(), TermName('str"), TypeTree(),
Literal(Constant( "My hovercraft is full of eels"))), Apply(Select(Ident(scala.Predef),
TexrmName("“println")), List(Apply(Select(Apply(Select(Ident(scala.StringContext), TexrmName("apply")),
List(Literal(Constant("String: ")), Literal(Constant(" Double: ")), Literal(Constant(" Int: ")),
Literal(Constant(" Int Expr: ")), Literal(Constant("")))), TermName("s")),
List(Select(This(TypeName("“StringIntexp"”)), TermName("str")), Select(This(TypeName("StringIntexp")),
TermName("dbl")), Select(This(TypeName("StringIntexp")), TexrmName("int")),
Apply(Select(Select(This(TypeName("StringIntexp"”)), TexrmName("int")), TermName("Stimes")),
List(Literal(Constant(1.0)))))))))
))), Literal(Constant(())))
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Enter The Macro

= Since Scala 2.10, Macros have shipped as an experimental feature.
= Seem to have been adopted fairly quickly: | see them all over the place.

» AST Knowledge can be somewhat avoided, with some really cool tools
to generate it for you.

» Macros make enhancing Scala much easier than writing compiler
plugins.

= NOTE: You need to define your macros in a separate project / library
from anywhere you call it.
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= The Macro project for Scala is evolving guickly.
= They release and add new features far more frequently than Scala does.

= “"Macro Paradise” is a compiler plugin meant to bring Macro improvements into
Scala" as they become available.

= One of the features currently existing purely in Macro Paradise is Macro
Annotations.

= You can learn more about Macro Paradise at http:/docs.scala-lang.org/overviews/
macros/paradise.html

" Focused on reliability with the current production release of Scala.
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Macro Annotations
ADT Validation

= Macro Annotations let us build annotations that expand via Macros.

= |'ve written a Macro that verifies the "Root" type of an ADT is valid.
The rules:

= The root type must be either a trait or an abstract class.
= The root type must be sealed.

= |'ve done this with AST manipulation to demo what that looks like.
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Macro Annotations
ADT Validation

= You can find this code at https:/github.com/bwmcadams/supreme-
macro-adventure

» | was feeling whimsical, and used part of a suggested random
repo name from Github...

= Let's look at some chunks of ScalaTest “should compile” / “should
not compile” code | use to validate my ADT Macro
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Macro Annotations
ADT Validation

"A test of annotating stuff with the ADT Compiler Annotation" should "Reject an unsealed trait" in {

| @ADT trait Foo

.stripMargin mustNot compile

it should "Reject a Singleton Object" in {

| @GADT object Bar

.stripMargin mustNot compile
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Macro Annotations
ADT Validation

it should "Approve a sealed trait" in {

| @QADT sealed trait Spam {
| def x: Int

|}

", stripMargin must compile

it should "Approve a sealed, abstract class" in {

| @ADT sealed abstract class Eggs

.stripMargin must compile
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Macro Annotations
ADT Validation

it should "Approve a sealed trait with type parameters" in {

| @ADT sealed trait Klang[T] {
| def x: Int
|}

"t stripMargin must compile

it should "Approve a sealed, abstract class with type parameters" in {

| @ADT sealed abstract class Odersky[T]

.stripMargin must compile
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ADT Validation

» First, we need to define an annotation:
@compileTimeOnly("Enable Macro Paradise for Expansion of Annotations via
Macros.")
final class ADT extends StaticAnnotation {

def macroTransform(annottees: Any*): Any = macxro ADTMacros.annotation_impl

}

= @compileTimeOnly makes sure we've enabled Macro Paradise: otherwise, our annotation fails to
expand at compile time.

= macroTransform delegates to an actual Macro implementation which validates our ‘annottees’
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ADT Validation

= This annotation macro is called once per annotated class. The fact that it has to
take varargs can be confusing.

= |If you annotate a class with a companion object, both are passed in.

= |f you annotate an object with a companion class, only the object is passed in.

= You must return both from your macro, or you get an error: top-level class

with companion can only expand into a block consisting in

eponymous companions
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The Code...

\We could do this with the AST...

def annotation_impl(c: whitebox.Context)(annottees: c.Expr[Any]*): c.Expx[Any] = {
import c.universe._
import Flag._
val p = c.enclosingPosition
val inputs = annottees.map(_.tree).tolList
val result: Tree = {

// Tree manipulation code

/] if no errors, return the original syntax tree

c.Expr[Any](xesult)
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Matching Our Tree

inputs match {
// both classes & traits
case (cD @ ClassDef(mods, name, tparams, impl)) :: Nil =

validateClassDef(cD, mods, name, tparams, impl, companion = None)

// annotated class with companion object.

: (mD: ModuleDef) :: Nil =
Some(mD) )

case (cD @ ClassDef(mods, name, tparams, impl))

validateClassDef(cD, mods, name, tparams, impl, companion
case (o @ ModuleDef(_, name, _)) :: Nil =

c.exror(p, s"ADT Roots (object S$Sname) may not be Objects.")
0
// ... corner cases such as vals, vars, defs
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Matching Our Tree

case X :: Nil =

c.error(p, s"Invalid ADT Root ($x) [${x.getClass}].")

X
case Nil =

c.exrroxr(p, "Cannot validate ADT Root of empty Tree.")
// the exrxors should cause us to stop before this but needed to match up our match type
reify {}.tree
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def validateClassDef(cD: c.universe.ClassDef, mods: c.universe.Modifiers,

name: c.universe.TypeName, tparams: List[c.universe.TypeDef],
impl: c.universe.Template, companion: Option[ModuleDef]): c.universe.Tree = {

if (mods.hasFlag(TRAIT)) ({

if (!mods.hasFlag(SEALED)) {
c.exroxr(p, s"ADT Root traits (trait Sname) must be sealed.™)

}

else {
c.info(p, s"ADT Root trait Sname sanity checks OK.", force = true)

}

companion match {
case Some(mD) = q"ScD; SmD"

case None = cD
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} else if (!mods.hasFlag(ABSTRACT)) {
c.exrroxr(p, s"ADT Root classes (class Sname) must be abstract.™)
cD
} else if (!mods.hasFlag(SEALED)) {
// class that's abstract
c.exxror(p, s"ADT Root classes (abstract class $Sname) must be sealed.")
cD
} else {
c.info(p, s"ADT Root class Sname sanity checks OK.", force = true)
companion match {
// Using ClassDef match, Scala requires tree includes all annottees (companions) sent in.
case Some(mD) = q"ScD; SmD"

case None = cD
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Macros & The AST

= Macros are still really built with the AST, but lately Macros provide
tools to generate ASTs from code (which is what | use, mostly).

= The first, and simplest, is xeify, which we can use to generate an
AST for us.
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Peeking at AST Examples for “Inspiration™

Remember my first example of the AST? | actually printed it out using reify:

println(showRaw(reify {
class StringInterp {
val int = 42
val dbl = Math.PI

val str = "My hovercraft is full of eels”
println(s"String: $str Double: $dbl Int: $Sint Int Expr: ${int % 1.0}")

}
}.tree))

.tree will replace the xreify ‘expansion’ code with the AST associated. showRaw converts it to a
printable format for us.
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Quasiquotes for More Sanity

= There's really no way — yet — to avoid the AST Completely. But the
Macro system continues to improve to give us ways to use it less
and less.

= Quasiquotes, added in Scala 2.11, lets us write the equivalent of
String Interpolation code that ‘evals’ to a Syntax Tree.

» We'll introduce Quasiquotes, and, time permitting, we're going to
also look at a Quasiquotes version of the ADT Macro.
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Quasiquotes in Action

Setting Up Our imports
There are some implicits we need in scope for Quasiquotes Ah, the joy of imports...

import language.experimental.macros

import reflect.macros.Context

import scala.annotation.StaticAnnotation
import scala.reflect.runtime. {universe => ru}

import ru._

Now we're ready to generate some Syntax Trees!
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Quasiquotes in Action
Writing Some Trees

Quasiquotes look like String Interpolation, but we place a q in front of
our string instead of s... and generate code!

scala> q"def echo(str: String): String = str"

res4: reflect.runtime.universe.DefDef =
def echo(stxr: String): String = str
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Quasiquotes in Action

Writing Some Trees

scala> val wtfException = q"""
case class OMGWTFBBQ(message: String = null)
extends Exception

with scala.util.control.NoStackTrace

wtfException: reflect.runtime.universe.ClassDef =
case class OMGWTFBBQ_extends Exception with scala.util.control.NoStackTrace
with scala.Product with scala.Serializable {
<caseaccessor> <paramaccessor> val message: String = _;
def <init>(message: String = null) = {
super.<init>();

()
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Extracting with Quasiquotes

It turns out Quasiquotes can do extraction too, which | find sort of fun.

scala> val q"""case class Scname[..$Stpaxams](..Sparams)

extends Sparent with ..Straits { ..Sbody }""" = wtfException

cname: reflect.runtime.universe.TypeName = OMGWTFBBQ_
List()

tparams: List[reflect.runtime.universe.TypeDef]
params: List[reflect.xruntime.universe.ValDef] =

List(<caseaccessor> <paramaccessor> val message: String = null)
parent: reflect.runtime.universe.Tree = Exception

traits: List[reflect.runtime.universe.Tree] List(scala.util.control.NoStackTrace)

body: List[reflect.runtime.universe.Tree] = List()
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BRILLEIANT!
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ADT Macro with Quasiquotes

= With Quasiquotes, we can implement our ADT in a pure match with
pattern guards.

= |tis nearly half the # of lines.
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Traits & Classes Validation

val result: Tree = inputs match {
case (t @ q"Smods trait Sname[..Stparams] extends ..Sparents { ..Sbody }") :: Nil
if mods.hasFlag(SEALED) =

c.info(p, s"ADT Root trait Sname sanity checks OK.", force = true)
t
case (t @ q"Smods trait Sname[..Stparams] extends ..Sparents { ..Sbody }") :: Nil =

c.error(p, s"ADT Root traits (trait Sname) must be sealed.")
t
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Classes Validation

// there's no bitwise AND (just OR) on Flags
case (cls @ q"Smods class Sname[..Stparams] extends ..Sparents { ..Sbody }") :: Nil
if mods.hasFlag(ABSTRACT) 8&8& mods.hasFlag(SEALED) =

c.info(p, s"ADT Root class Sname sanity checks OK.", force = true)
cls
case (cls @ q"Smods class Sname[..Stparams] extends ..Sparents { ..Sbody }") :: Nil =

c.exxror(p, s"ADT Root classes (class Sname) must be abstract and sealed.")
cls
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Singletons & Trait Companions Validation

case (o @ g"Smods object Sname") :: Nil =
c.exxor(p, s"ADT Roots (object Sname) may not be Objects.")

(o)

// companions
case (t @ q"Smods trait Sname[..Stparams] extends ..Sparents { ..Sbody }") ::

(mD: ModuleDef):: Nil
if mods.hasFlag(SEALED) =

c.info(p, s"ADT Root trait Sname sanity checks OK.", force = true)

ql|$t; $mD||
case (t @ q"Smods trait Sname[..Stparams] extends ..Sparents { ..Sbody }") ::

(mD: ModuleDef) :: Nil =
c.exror(p, s"ADT Root traits (trait Sname) must be sealed.")

q"St; SmD"
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Singletons & Trait Companions Validation

// there's no bitwise AND (just OR) on Flags

case (cls @ q"Smods class Sname[..Stparams] extends ..Sparents { ..Sbody }") ::
(mD: ModuleDef) :: Nil =

c.info(p, s"ADT Root class Sname sanity checks OK.", force = true)
q"Scls; SmD"

case (cls @ q"Smods class Sname[..Stparams] extends ..Sparents { ..Sbody }")
:: (mD: ModuleDef) :: Nil =

c.exror(p, s"ADT Root classes (class Sname) must be abstract and sealed.")
q"Scls; SmD"
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Closing Thoughts

= Macros are undoubtedly cool, and rapidly evolving. But be cautious.

» “When all you have is a hammer, everything starts to look like a
thumb..”

— [Me

= Macros can enable great development, but also hinder it if overused.
Think carefully about their introduction, and their impact on your
codebase.
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